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Abstract: Urbanization has adverse environmental effects, such as rising surface temperatures. This
study analyzes the relationship between the urban heat island (UHI) intensity and Tianjin city’s
land cover characteristics. The land use cover change (LUCC) effects on the green areas and the
land surface temperature (LST) were also studied. The land cover characteristics were divided into
five categories: a built-up area, an agricultural area, a bare area, a forest, and water. The LST was
calculated using the thermal bands of spatial images taken from 2005 to 2020. The increase in the
built-up area was mainly caused by the agricultural area decreasing by 11.90%. The average land
surface temperature of the study area increased from 23.50 to 36.51 ◦C, and the region moved to a high
temperature that the built-up area’s temperature increased by 1.5%. Still, the increase in vegetation
cover was negative. From 2020 to 2050, the land surface temperature is expected to increase by 9.5 ◦C.
The high-temperature areas moved into an aerial distribution, and the direction of urbanization
determined their path. Urban heat island mitigation is best achieved through forests and water, and
managers of urban areas should avoid developing bare land since they may suffer from degradation.
The increase in the land surface temperature caused by the land cover change proves that the site is
becoming more urbanized. The findings of this study provide valuable information on the various
aspects of urbanization in Tianjin and other regions. In addition, future research should look into the
public health issues associated with rapid urbanization.

Keywords: land surface temperature; urban heat island; land use cover change; urban planning and
development; ecological evaluation; urban system

1. Introduction

The rapid growth of urban areas worldwide has been observed over the past few
decades [1]. The main factors contributing to urbanization are the lack of economic develop-
ment and the increasing population [2]. Despite the slow growth of the global population,
it is still expected that the number of people will continue to increase by around 2030 [1].
According to estimates, the world’s urban area is expected to grow by over a million
kilometers by 2030 [1,3–6]. Urbanization is most prevalent in developing countries due to
rapid economic development. China is one of the most prominent in the world regarding
urbanization. It has been estimated that the country’s urban land area expanded at an
annual rate of 13.3% [7].

Urbanization positively impacts people’s lives, as it allows them to improve their living
standards and reduce their energy consumption. It can also help mitigate climate change
by reducing vehicle miles travelled and greenhouse gas emissions [8]. Unfortunately, there
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are still negative impacts of urbanization. Due to the human activities that have occurred
in the past few decades, the city has expanded. This process has caused both positive and
negative effects [9].

Urbanization is a complex process involving multiple modelling variables and mecha-
nisms involved in its development. The various aspects of this process must be thoroughly
studied to understand its effects. One of the most effective ways to predict an urban area’s
characteristics is through Land Use Cover change (LUCC) analysis [8,10,11]. A compre-
hensive simulation of the urban development process is necessary in today’s world [12,13].
With the help of spatial data, such as land area and development characteristics, urban
models can be used to study the patterns of urbanization. These models can also simulate
the conditions affecting the city’s development. Urban models use mathematical equations
to describe the urban system [14,15]. They can also deal with the various factors that affect
the development of a city. The study results are based on the interactions between different
strategies and aspects [9,16]. Urban models are becoming more effective at predicting
future changes in the LUCC due to the complexity of the process. They can use the avail-
able data and conditions to model the different factors affecting the city’s development.
Numerous studies have been conducted on the use of LUCC in policy formulation and
decision making.

However, the application of cellular automata and the Markov process is relatively
rare. Tianjin is considered one of the most prominent cities in China that has experienced
sustained urbanization, industrialization, and urbanization in China [17,18]. As a result of
its ongoing development, many cities are expected to continue to grow [19]. It is essential
that the cities’ LUCC change be studied and analyzed to determine its future trend [20,21].
This study was conducted to comprehensively analyze the various factors that have affected
the city’s development. The study examined the LUCC change in Tianjin from 1995 to
2015. It first created five maps with different classifications at different points in time.
The analysis revealed that many areas were converted into built-up areas. The model
was then analyzed to create a set of dynamic variables for the Cellular Automata Model
(CA) [11,22,23]. These variables were then used to project the LUCC change in the city from
2025 to 2050.

2. Materials and Methods
2.1. Study Area

The city of Tianjin, the largest city on China’s northern coast, is straddled at 38◦34′ N
to 40◦15′ N and 116◦43′ E to 118◦04′ E (Figure 1), having a thousand square kilometers. It
is regarded as the fifth-largest city in the country after Shanghai, Beijing, Guangzhou, and
Shenzhen [24]. With a warm, temperate, semi-humid monsoonal climate, it is characterized
by four distinct seasons during the year [25,26]. Over the past few years, Tianjin has
experienced massive urbanization, with its population increasing from 12.99 million in
2010 to 13.86 million in 2021 [1].The city of Tianjin has a gross domestic product of about
240 billion yuan, making it one of the most prominent economic centers in China’s northern
region [25,27,28]. It is an international port city and has experienced rapid urbanization
over the past few decades. Due to rapid urbanization, large areas of land, such as forests,
farmland, and meadows, have been converted into built-up areas [29,30].

2.2. Acquisition of Spatial Dataset

The United States Geological Survey (USGS) provided cloud-free images of the
study area, which were taken from path 170 and series 053, through its website (http:
//earthexplorer.com) [6,9,10,13,17,25,31]. Due to the varying time of day and night in the
study area, the data collected by the Landsat 5 Thematic Mapper (TM) and the Landsat 7
Enhanced Thematic Mapper (ETM) were used to create the LUCC map [13,18,32–34]. The
data collected by the two satellites (Table 1) were also used to calculate the Normalized
Difference of Vegetation Index (NDVI) and Land Surface Temperature (LST).

http://earthexplorer.com
http://earthexplorer.com
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Figure 1. Geographic location and characterization of the study area: (A) People’s Republic of China; 
(B) Beijing–Tianjin–Hebei (TBH); and (C) multispectral satellite image of Tianjin city. 
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obtained from Landsat imagery [13,30,37,38]. Then, the LST was calculated to determine 
the time zones in the city [17]. A Pearson correlation analysis was performed based on the 
land cover, average LST, and percentage of greened and non-greened areas from 2005, 
2010, 2015, and 2020 [8,31,39,40]. The CA-Markov model was used to forecast future 
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Figure 1. Geographic location and characterization of the study area: (A) People’s Republic of China;
(B) Beijing–Tianjin–Hebei (TBH); and (C) multispectral satellite image of Tianjin city.

Table 1. The Landsat data used in this study are outlined in detail.

Period-Images Satellite Sensor ID Spatial Resolution

2005 May–September Landsat-5 TM 30 m|100 m
2010 May–September Landsat-5 TM 30 m|100 m
2015 May–September Landsat-8 OLI_TIRS 30 m|100 m
2020 May–September Landsat-8 OLI_TIRS 30 m|100 m

2.3. Methodology

An integrated workflow template (Figure 2) was used to perform a series of steps.
We began by processing the information sets in GEE to create a false colour positive
(FCC) [10,11,25,35,36]. A georeferenced map of the outer boundaries of Tianjin was used to
extract and mask the study area from all spatial ideas. The support Vector Machine (SVM)
classification method was applied to improve the supervised classification results obtained
from Landsat imagery [13,30,37,38]. Then, the LST was calculated to determine the time
zones in the city [17]. A Pearson correlation analysis was performed based on the land
cover, average LST, and percentage of greened and non-greened areas from 2005, 2010,
2015, and 2020 [8,31,39,40]. The CA-Markov model was used to forecast future trends for
LUCC and LST in 2035 and 2050 [41]. All spatial statistical analyses and maps were created
using ArcGIS 10.7, and ggplot2, corrplot and psych packages used in RStudio [42].
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Figure 2. Flowchart of the methodology for the present study.

2.4. Land Use Cover Change (LUCC) Calculation

Landsat imagery (Landsat-5 TM & Landsat-8 OLI) was used to map the LUCC of
Tianjin city for a four-time frame (2005, 2010, 2015, and 2020). The Support Vector Machine
(SVM) classification algorithm in GEE was used to classify land use and areas [43,44]. Five
types of LUCC were identified: built-up land, cropland, lowland, forest, and water body
(Figure 3A). Built-up land included artificial structures such as buildings, roads, and other
impervious surfaces. Water included rice fields, reservoirs, and rivers [28,35,45].
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At specified intervals, GEE was used to assess the accuracy of the classification results.
Field reference points were collected using a Google Earth explorer, which collected field
reference average of 250 points for 2005, 2010, 2015, and 2020.
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The classification accuracy of the signatures and images was evaluated by creating
a confusion matrix consisting of rows and columns that refer to the categories derived
from the image. The matrix rows are labelled with the reference values, while the columns
represent the categories identified using the same criteria. The total number of entries that
formed the main diagonal was then divided by the number of pixels. The Kappa coefficient
was calculated using Equations (1)–(3) [1,2,46,47]:

P0 =
r

∑
i=1

(Pi+ ∗ P+i) (1)

Pc =
r

∑
i=1

(Pi+ ∗ P+i) (2)

KΛ =
P0 − Pc

1− Pc
(3)

where r = the number of rows in the error matrix; Pij = The proportion of pixels in a row “i”
and column “j”; and Pi = the fraction of the marginal sum of row “i”.

2.5. Calculation of Land Surface Temperature (LST)

The Landsat-8 thermal infrared sensor (TIRS) of bands 10 and 11 and the OLI sensor of
bands 2–5 were used individually to convert the raw image into a radiance spectral image
(SR) by following the equations (Table 2) step by step.

Table 2. Stepwise process for Land surface temperature (LST) determination.

Steps Process Name Equations References

1 Spectral Radiance (SR) Lλ = 0.0003342 ∗ DN + 0.1 [16,23,48]

2 Brightness Temperature (TB) TB = K2
ln((K1/Lλ)+ 1) − 273.15 [11,16,24]

3 NDVI NDVI = (NIR− RED/NIR + RED) [11,25,32]

4 Fractional Vegetation (Fv) Fv =
(

NDVI−NDVImin
NDVImax−NDVImin

)
[16,25,33,38]

5 Surface Emissivity (Sε) Sε = 0.004 ∗ Fv + 0.986 [16,38,40,47]

6 Land Surface Temperature
(LST) LST = TB

1+(λσ TB/(hc))ln ε
[15,38,40,49]

where λ is the effective wavelength (10.9 mm for a thermal band in Landsat 8 data), σ is the Boltz–Mann
constant (1.38 × 10−23 J/K), h is the Plank constant (6.626 × 10−34 Js), and c is the speed of light in vacuum
(2.998 × 10−8 m/s).

2.6. CA-Markov Prediction Model Analysis

This model uses a stochastic Markov probability matrix to predict the transition from
one state to another [14,43,50]. The study aims to analyze the various effects of urbanization
on the land use and development of the city of Tianjin using a computer model known
as a Markov chain model. This model was used to predict land use and development
trends [13,36,51]. A conditional probability formula was used to estimate trend lines from
Equations (4)–(6).

S(t + 1) = Pij × S(t) (4)

Pij =

P11 P12 P1n
P21 P22 P2n
Pn1 Pn2 Pn3

 (5)

However, (
0 ≤ Pij < 1 and ,

N

∑
j=1

Pij = 1, (i, j = 1, 2, 3 . . . . . . . . . .n

)
(6)
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Because of Markov chain and cellular automata modelling, LUCC and LST’s future
scenarios are calculated by projecting 2035 and 2050 using Terrset’s land use change modeler
(LCM) (Clark Labs TerrSet 18.31).

3. Results
3.1. Changes in LUCC between 2005 and 2020

According to the LUCC distribution values for 2005, 2010, 2015, and 2020, the built-up
area in cities has increased (Figure 3). Built-up area increased from 15.46% in 2005 to 17.80%
in 2010, 19.56% in 2020, and 22.72% in 2050. In 2005, the study area included 18.43% of
the lowlands; this number decreased to 12.52% by 2010, 11.89% by 2015, and 10.21% by
2020. Arable land increased rapidly from 26.10% in 2005 to 28.95% in 2020, while other
land decreased from 26.47% to 26.10%. Increasing migration from villages to cities has led
to an expansion of cultivated land outside prime locations. The cultivated area decreased
from 10.72% in 2005 to 7.98% in 2020. Water covered 1.21% of the site in 2005, 0.92% in 2010,
0.87% in 2015, and 0.68% in 2020. An assessment of land use changes during 2005–2020
showed that farmland in the northeastern study area was converted to urban areas (mainly
industrial areas). Between 2005 and 2020, built-up urban land and cropland increased by
15.45% and 1.64%, respectively, while lowland land decreased by 13.73%. These results
show that about 11.45% of the lowlands have been converted into built-up areas. The
LUCC changes were classified into five categories LUC with corresponding definitions
(Table 3).

Table 3. Land use cover (LUC) statistics in 2035 and 2050.

Category
LUC_2035 LUC_2050

Area %Age Area %Age

urban 3001.75 18% 3204.70 19%
cropland 401.69 2% 272.27 2%

water 1716.04 10% 1678.71 10%
forest 1982.96 12% 1946.75 11%

lowland 9914.57 58% 9914.57 58%

The results of all studies show that urban built-up has changed significantly over two
decades. In recent decades, Tianjin has gone from a village to a city residential settlement.
This transition happens between agricultural land to residential areas. Urban growth and
LST are sensitive to accuracy assessment [29]. According to [52,53], a method was defined
for assessing the accuracy of the classification of maps. According to the LUCC maps, the
overall accuracy was 84.39% in 2005, 90.43% in 2010, and 94.11% in 2020. Kappa coefficients
for the LUCC maps were 0.79, 0.87, and 0.92. The kappa coefficient should be greater than
0.75 or 0.80 to show compatibility between the classification and the reference data [54].
The United States Geological Survey (USGS) recommends using Landsat satellite images
for LUCC mapping if the accuracy level is 85% [55]. Our accuracy evaluation results are
consistent with those recommended in the literature.

3.2. Relationship between LUCC and LST

LST is significantly affected by land use changes (LUCC). The number and distribu-
tion of hotspots increase with LUCC types (especially urban expansion) [56]. A map of
LST distribution was created using Landsat TM/ETM+/OLI imagery for the study area
(Figure 4). There were temperature variations from 21 ◦C to 43 ◦C in 2005, 21.8 ◦C to
44.3 ◦C in 2010, 22.1 ◦C to 44.9 ◦C in 2010, and 22.5 ◦C to 45.9 ◦C in 2020. During 2005–2020,
built-up urban areas had the highest average temperatures, followed by lowland, crop-
land, vegetation, and water. In 2005, all LUCC categories had the most elevated average
temperatures (Figure 5A). In 2005, urban built-up areas had an average LST of 38.43 ◦C,
38.99 ◦C in 2010, 41.86 ◦C in 2015, and 44.80 ◦C in 2020. During 2005–2020, the temperature
in built-up urban areas LST decreased by 4.12 ◦C but increased by a maximum of 6.82 ◦C
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from 2010 to 2020. Lowlands had the second-highest LST for all LUCC categories during
the study period. The LST for wasteland decreased by 3.38 ◦C from 2005 to 2010 but did
not change significantly between 2010 and 2020. The LST for cropland was 31.04 ◦C in 2015
and increased to 31.98 ◦C, 32.63 ◦C, and 33.75 ◦C in 2010, 2015, and 2020, respectively.
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From 2005 to 2020, the temperature of cropland LST decreased by 3.85 ◦C, while it
increased by 15.35% in developed areas. Vegetated areas recorded a decrease of 5.32 ◦C
between 2005 and 2010 LST but an increase of 6.83 ◦C between 1999 and 2015. All LUCC
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categories recorded the lowest LST in 2010, and the average temperature in water bodies
and vegetated areas was the lowest overall. According to statistics from LST for 2005–2020,
the maximum difference between urban areas and water bodies is 14.35 ◦C.

LST has remained relatively stable between 2005 and 2020. These areas are also
referred to as lowlands. Compared to urban areas, lowlands have a higher LST value. Our
study came to similar conclusions. High LST values may be found in these areas due to
the soil composition (sand, clay, etc.). The average daily air temperature may influence the
LST values at the satellite imagery data on the day the satellite imagery was taken rather
than the spatial values of the land use classes. To verify that LST results calculated from the
Landsat TM/ETM heat band are comparable to actual field temperatures, temperatures of
the various LUCC properties must be measured from field observations [57]. Considering
the values reported at LST, the daily mean air temperatures of the reported data (the daily
mean air temperature on 19 June 2005 is 27.5 ◦C; on 10 July 2010, it is 23.03 ◦C; on 23 July
2015, it is 26.86 ◦C; and the daily mean air temperature on 11 August 2020 is 29.53 ◦C) are
all parallel to each other (See Figure 6).
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2005–2020.

Pearson’s correlation analysis shows LST is statistically associated with popu-
lated/developed areas. Even though LST is bad for water and plants and does not have
much to do with them, it is strongly linked to forested areas. In the same way, LSTs in
cities have a negative and insignificant effect on water and plants. LST and urban/built-up
areas have a significant and favourable relationship, as shown by the simple correlation
coefficient [51]. In urban areas, a temperature rise may also be caused by the construction
of new buildings, highways, businesses, and industrial regions. Negative and insignificant
correlations are observed with barren land, while optimistic and negligible correlations are
marked with arable and cropland. Pearson correlation analysis results are reported for all
LUC variables and LST indices (Figure 7).



Int. J. Environ. Res. Public Health 2023, 20, 2642 9 of 15Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 7. Pearson correlation analysis of land use change and land surface temperature during 2005-
2020. 

3.3. Variations of LST Changes over Different LUCC 
We estimated the mean LST distributions for LUCC classes over 2005–2020. During 

the study period, mean values of LST increased significantly in all LUCC classes, but 
matters of LST were substantially higher in built-up areas and bare ground. The 
importance of LST in the built-up area increased from 28.86 °C to 37.23 °C between 2005 
and 2020, while in the empty ground area, they increased from 21.56 °C to 25.01 °C. Over 
the past two decades, the average LST distribution in built-up and bare-ground regions 
has risen by about 9 °C and 4 °C, respectively. The LST distribution in water bodies and 
vegetated areas have also changed. In 2000, the mean LST for vegetated areas was 21.31 
°C, but it is expected to reach 25.98 °C by 2020. The LST of water bodies increased from 20 
to 24.45 °C. The following figure (Figure 8) briefly describes the changes in LUCC types 
and their relative impacts on land surface temperature. 

 
Figure 8. Shows classified maps of LUC and LST for the year 2020, and predicted maps of 2020, 
2035, and 2050. 

  

Figure 7. Pearson correlation analysis of land use change and land surface temperature during
2005-2020.

3.3. Variations of LST Changes over Different LUCC

We estimated the mean LST distributions for LUCC classes over 2005–2020. During the
study period, mean values of LST increased significantly in all LUCC classes, but matters
of LST were substantially higher in built-up areas and bare ground. The importance of LST
in the built-up area increased from 28.86 ◦C to 37.23 ◦C between 2005 and 2020, while in the
empty ground area, they increased from 21.56 ◦C to 25.01 ◦C. Over the past two decades,
the average LST distribution in built-up and bare-ground regions has risen by about 9 ◦C
and 4 ◦C, respectively. The LST distribution in water bodies and vegetated areas have also
changed. In 2000, the mean LST for vegetated areas was 21.31 ◦C, but it is expected to reach
25.98 ◦C by 2020. The LST of water bodies increased from 20 to 24.45 ◦C. The following
figure (Figure 8) briefly describes the changes in LUCC types and their relative impacts on
land surface temperature.
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3.4. Validation of Predicted LUCC and LST Scenarios

To validate the accuracy of the predicted values, we first used the CA-Markov model
to estimate the LUCC and LST for 2020 (Figure 8). Based on various kappa parameters,
the predicted and estimated maps were compared using the land use Change Modeler
in Clark Lab’s Terrset software. The average error value for all parameters during the
comparison was about 12.86%, and all kappa parameters, percentage of accuracy, and total
kappa values were above 0.80.

3.5. Predicted LUCC for 2035 and 2050

We could predict the scenario for 2035 and 2050 based on the classified maps for the
study period. According to the predicted LUCC map, the growth of urban areas will be
concentrated by 37% in the northwestern and central regions if the trend of the building
continues without planned actions. Urban areas will replace the lowlands and vegetation
cover. Vegetation cover has decreased by 9.62% from 12.82% in 2020. Based on the study
scenario, LUCC would face a 20.51% increase in developed land, followed by a significant
decrease in lowlands, vegetation cover, and water bodies of 10.87%, 9.62%, 8.32%, and
2.45%, respectively (Figure 8). The category-wise land use statistics for the forecast years are
shown in the following table: Ecosystem services, urban health, and thermal characteristics
may be affected by decreased vegetation cover and increased urbanization. If unplanned
urban expansion continues, the environmental, economic, and medical problems will
increase significantly. A proper land use plan, the protection of water bodies, and the
reforestation of forests are needed to make Tianjin city more environmentally sustainable.

By forecasting LST for 2035 and 2050, the simulation showed that higher temperatures
will occur in the built-up areas in the northwest and central parts of the country (Figure 8),
ranging from 41.56 ◦C to 44.34 ◦C in 2035 and 2050, respectively. We divide the temperature
zone into five classes to estimate how much area is covered by each temperature range
(Table 4). Based on the projections, LST has increased over the past two decades (2005–2020),
with urban areas influencing the prevalence of LST. UHI effects will increase as urban areas
and vegetation cover decrease. It would be possible to explain the temperature increase
without urbanization by climate change, greenhouse effects, and surface features. The
LST prediction highlights the real risks of the temperature rise in the trend, including
higher UHI effects. A combination of energy use, greenhouse gas emissions, and air
pollution contribute to the UHI effect. It threatens aquatic systems (rivers, lakes, ponds,
streams, and oceans) and human health. Human health is primarily harmed by increased
greenhouse gas emissions, which affect urban health and reduce the urban environment’s
sustainability [58].

Table 4. Land surface temperature (LST) statistics in 2035 and 2050.

Category
LST-2035 LST-2050

Area %Age Area %Age

<20 ◦C 1839.763 16.85% 1851.812 16.96%
20–25 ◦C 4933.693 45.18% 5056.619 46.31%
25–30 ◦C 4118.498 37.72% 3859.214 35.34%
30–35 ◦C 26.86548 0.25% 150.4464 1.38%
>35 ◦C 0.113955 0.00% 0.842528 0.01%

3.6. Limitations of the CA-Markov Model

The prediction of LUCC and LST can be improved using the CA-Markov model if
the previous LUCC and LST patterns are consistent. As a result, CA-Markov models do
not provide accurate spatial predictions for raster datasets [59]. Since influential factors
can be directly determined between CA-Markov and other factors, CA-Markov is based
on a probability matrix [60]. Given the relative importance of the different variables in
identifying the most important variables, it is essential to note that the CA-Markov model
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generates training patterns and automatically begins training after receiving inputs from
the strata. The input parameters are not individually weighted according to established
standards [61]. Since urbanization, the loss of green space and increase in surface tempera-
tures are primarily influenced by human activities and conscious decisions at regional to
metropolitan scales; it is impossible to predict them accurately. It is essential to recognize
that dynamic models have some limitations. Still, they help develop hypotheses and make
decisions about changes in land cover or surface temperatures in any given area, regardless
of their rules. In recent years, LUCC and LST variability and predictive maps have emerged
as one of the best tools for managing and mitigating vital natural resources.

4. Discussion

Tianjin’s rapid urbanization and development between the 1990s and 2020s signif-
icantly altered the LUCC landscapes caused by farmland separation and reduced total
vegetation cover [25,33]. The city’s urban development also resulted in the establishment of
new industries and residential areas. Rapid vegetation cover loss affects an area’s natural
cooling effect [29,62]. Some factors contributing to this phenomenon are vegetation shading
and transpiration. To amplify this, LST and NDVI have shown that VC, due to its cooling ef-
fect, serves as a sink in an urban heat island [11,63]. Rapid vegetation cover loss has several
consequences for an area’s natural cooling effect. It has the potential to eventually eliminate
the processes that regulate surface transpiration and evaporation [11,17,56,64]. Urbaniza-
tion leads to distorted construction, reducing soil infiltration and increasing surface runoff.
As a result, the water table and groundwater table decrease. Evapotranspiration is not
adequately realized due to these two factors. Climate change leads to a deterioration of the
water balance [49]. Climate variables such as daily maximum and minimum temperatures
are affected by changes in land use. Surface albedo changes due to changes in land use.
Therefore, land use changes disturb the balance of Earth’s radiation [65]. An important
factor in reducing air temperatures is the conversion of wetlands to agricultural land with
high albedo [66].

Although the impact of this phenomenon on the LST of various types of plants is less
than that of urban tree cover and gardens, studies have shown that it still contributes to
the overall reduction of the area’s natural cooling effect [32,67]. The impact of various
types of urban vegetation, water bodies, and forests on the LST varies according to their
proportional area [23,37]. In urban areas, vegetation plays a vital role in controlling or
mitigating temperature. Evaporation from urban water bodies contributes to moisture
accumulation in the surrounding air. According to studies, these bodies regulate the LST
in residential areas. It is also known that urban areas contribute to the development of
intricate heat flows within these regions [46,68]. Various private and public entities have
worked together to revitalize large tracts of land for industrial, commercial, and residential
development. Traditional wooden structures have been demolished and replaced with tall
structures made of non-evaporative materials such as glass, concrete, and aluminium. These
materials can directly impact heat flows in urban areas [8,10]. According to studies, urban
areas in China are more vulnerable to severe LST than rural areas. LST has risen due to the
government’s decision to convert agricultural and forest land into urban areas [38,69]. The
government has relocated factories and businesses to the outskirts of cities to improve their
efficiency. These facilities are typically found in developed areas. Before the development of
urban areas, forests and vegetation were regarded as buffer zones between rural and urban
areas, absorbing excess heat generated by factories and automobiles [3,29,40]. According to
the scientific literature, the cooling effect of LUCC is well-matched to the expected warming
effect caused by the physical interaction of the Indian region and its surroundings [32].
For example, the maximum cooling contribution from forested areas is 0.27%, while the
minimum cooling effect is 0.06%. The most negligible difference between the surface
temperature and the impervious surface is the primary reason why vegetation contributes
the least to the cooling effect. The greatest cooling effect, on the other hand, is observed
when forested areas are converted into water bodies. This is due to the fact that the
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contribution of land cover to cooling is negligible in various areas, such as urban areas,
water bodies, and vegetation. The results of the study revealed that the built-up area in the
southeastern and central port areas will continue growing. The paper discussed the various
effects of the LUCC on the Tianjin city’s development. The study used the CA model and
Geographic Information Systems to analyze the data. The results of the analysis helped
improve the Tianjin city’s planning process. In addition, the paper discussed the use of
remote sensing tools for improving the urban planning process.

5. Conclusions

The objective of this study was to analyze the influence of LUCC on land surface
temperature (LST) in a large urban area of Tianjin. Data from RS were used to observe the
area’s various socioeconomic and development parameters. The study also used the CA-
Markov model and Pearson correlation coefficient to evaluate the contribution of landscape
dynamics to temperature. A 5.94% increase in built-up area was found to increase the
temperature by 1.5%. However, the increase in vegetation cover by 10% showed a negative
correlation. In addition, the study concluded that LUCC has a cooling effect of about
1.40 ◦C in the city. The average warming effect of LUCC on the UHI is about 0.5%.

On the other hand, the cooling effect of LUCC compared to the shifts in the reverse
direction is 0.11%. The positive contribution of LUCC to the UHI was higher than the
negative one. Urban development and infrastructure planning should be further targeted to
minimize the impacts of climate change. In addition to improving water bodies and parks,
other measures, such as the establishment of green spaces and linear planting of woody
plants, should also be implemented. The study found that further research is needed to
analyze the impact of land use change on the climate of regions and cities. As more areas
are affected by climate change, the government and private sector must work together to
develop effective cooling strategies. Environmental education should be made accessible
to promote the development of ecological resources. This needs effective urban planning
and green policies to address the increasing thermal stress. In addition, a quantitative
analysis of these parameters needs to be conducted. Although the study found that
urbanization directly impacts land surface temperature, it is not yet clear how the effects of
this process are related to the other factors. The practical application of the study provides
essential guidance for urban landscape planning. It shows how landscape connectivity
between impervious and green areas can affect LST. Future research should also address
infrastructure stress and public health issues associated with rapid urbanization.
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Land Surface Temperature from the Landsat-8 Thermal Band. Remote Sens. 2018, 10, 431. [CrossRef]

49. Zhang, Y.; Yu, T.; Gu, X.; Zhang, Y.; Chen, L. Land surface temperature retrieval from CBERS-02 IRMSS thermal infrared data and
its applications in quantitative analysis of urban heat island effect. J. Remote Sens. 2006, 10, 789.

50. Connors, J.P.; Galletti, C.S.; Chow, W.T. Landscape configuration and urban heat island effects: Assessing the relationship between
landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc. Ecol. 2013, 28, 271–283. [CrossRef]

51. Firozjaei, M.K.; Sedighi, A.; Kiavarz, M.; Qureshi, S.; Haase, D.; Alavipanah, S.K. Automated Built-Up Extraction Index: A New
Technique for Mapping Surface Built-Up Areas Using LANDSAT 8 OLI Imagery. Remote Sens. 2019, 11, 1966. [CrossRef]

52. Saadat, H.; Adamowski, J.; Bonnell, R.; Sharifi, F.; Namdar, M.; Ale-Ebrahim, S. Land use and land cover classification over a large
area in Iran based on single date analysis of satellite imagery. ISPRS J. Photogramm. Remote Sens. 2011, 66, 608–619. [CrossRef]

53. Congalton, R.G. Remote sensing and geographic information system data integration: Error sources and. Photogramm. Eng.
Remote Sens. 1991, 57, 677–687.

54. Wondrade, N.; Dick, Ø.B.; Tveite, H. GIS based mapping of land cover changes utilizing multi-temporal remotely sensed image
data in Lake Hawassa Watershed, Ethiopia. Environ. Monit. Assess. 2014, 186, 1765–1780. [CrossRef] [PubMed]

55. Bakr, N.; Weindorf, D.; Bahnassy, M.; Marei, S.; El-Badawi, M. Monitoring land cover changes in a newly reclaimed area of Egypt
using multi-temporal Landsat data. Appl. Geogr. 2010, 30, 592–605. [CrossRef]

http://doi.org/10.3390/ijerph14080840
http://doi.org/10.1515/pesd-2017-0032
http://doi.org/10.12171/j.1000-1522.20190045
http://doi.org/10.3390/su13073590
http://doi.org/10.1016/j.rse.2005.11.016
http://doi.org/10.1007/s10980-009-9402-4
http://doi.org/10.1016/j.rse.2003.11.005
http://doi.org/10.3390/rs12030440
http://doi.org/10.1016/j.rse.2012.10.025
http://doi.org/10.1080/22797254.2018.1474494
http://doi.org/10.1016/j.rse.2015.12.022
http://doi.org/10.1016/j.rse.2011.08.024
http://doi.org/10.1117/1.JRS.11.036020
http://doi.org/10.1016/j.compenvurbsys.2015.08.002
http://doi.org/10.1016/j.rse.2009.07.021
http://doi.org/10.1007/s10584-013-0796-2
http://doi.org/10.3390/rs10030431
http://doi.org/10.1007/s10980-012-9833-1
http://doi.org/10.3390/rs11171966
http://doi.org/10.1016/j.isprsjprs.2011.04.001
http://doi.org/10.1007/s10661-013-3491-x
http://www.ncbi.nlm.nih.gov/pubmed/24310365
http://doi.org/10.1016/j.apgeog.2009.10.008


Int. J. Environ. Res. Public Health 2023, 20, 2642 15 of 15

56. Mumtaz, F.; Arshad, A.; Mirchi, A.; Tariq, A.; Dilawar, A.; Hussain, S.; Shi, S.; Noor, R.; Noor, R.; Daccache, A. Impacts of reduced
deposition of atmospheric nitrogen on coastal marine ecosystem during substantial shift in human activities in the twenty-first
century. Geomat. Nat. Hazards Risk 2021, 12, 2023–2047. [CrossRef]

57. Mallick, J.; Kant, Y.; Bharath, B. Estimation of land surface temperature over Delhi using Landsat-7 ETM+. J. Ind. Geophys. Union
2008, 12, 131–140.

58. Kafy, A.-A.; Rahman, M.S.; Hasan, M.M.; Islam, M. Modelling future land use land cover changes and their impacts on land
surface temperatures in Rajshahi, Bangladesh. Remote Sens. Appl. Soc. Environ. 2020, 18, 100314. [CrossRef]

59. Li, J.; Zhang, C.; Zheng, X.; Chen, Y. Temporal-Spatial Analysis of the Warming Effect of Different Cultivated Land Urbanization
of Metropolitan Area in China. Sci. Rep. 2020, 10, 2760. [CrossRef] [PubMed]

60. Van Gerven, M.; Bohte, S. Artificial neural networks as models of neural information processing. Front. Comput. Neurosci. 2017,
11, 114. [CrossRef]

61. Shatnawi, N.; Abu Qdais, H. Mapping urban land surface temperature using remote sensing techniques and artificial neural
network modelling. Int. J. Remote Sens. 2019, 40, 3968–3983. [CrossRef]

62. Niu, L.; Tang, R.; Jiang, Y.; Zhou, X. Spatiotemporal Patterns and Drivers of the Surface Urban Heat Island in 36 Major Cities in
China: A Comparison of Two Different Methods for Delineating Rural Areas. Sustainability 2020, 12, 478. [CrossRef]

63. Luo, X.; Li, W. Scale effect analysis of the relationships between urban heat island and impact factors: Case study in Chongqing.
J. Appl. Remote Sens. 2014, 8, 084995. [CrossRef]

64. Yang, P.; Ren, G.; Liu, W. Spatial and temporal characteristics of Beijing urban heat island intensity. J. Appl. Meteorol. Climatol.
2013, 52, 1803–1816. [CrossRef]

65. Myhre, G.; Myhre, A. Uncertainties in radiative forcing due to surface albedo changes caused by land-use changes. J. Clim. 2003,
16, 1511–1524. [CrossRef]

66. Chen, W.; Zhang, Y.; Pengwang, C.; Gao, W. Evaluation of urbanization dynamics and its impacts on surface heat islands: A case
study of Beijing, China. Remote Sens. 2017, 9, 453. [CrossRef]

67. Pal, S.; Ziaul, S. Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt.
J. Remote Sens. Space Sci. 2017, 20, 125–145. [CrossRef]

68. Tian, G.; Wu, J.; Yang, Z. Spatial pattern of urban functions in the Beijing metropolitan region. Habitat Int. 2010, 34, 249–255.
[CrossRef]

69. Yu, Z.; Xu, S.; Zhang, Y.; Jorgensen, G.; Vejre, H. Strong contributions of local background climate to the cooling effect of urban
green vegetation. Sci. Rep. 2018, 8, 6798. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1080/19475705.2021.1949396
http://doi.org/10.1016/j.rsase.2020.100314
http://doi.org/10.1038/s41598-020-59593-0
http://www.ncbi.nlm.nih.gov/pubmed/32066772
http://doi.org/10.3389/fncom.2017.00114
http://doi.org/10.1080/01431161.2018.1557792
http://doi.org/10.3390/su12020478
http://doi.org/10.1117/1.JRS.8.084995
http://doi.org/10.1175/JAMC-D-12-0125.1
http://doi.org/10.1175/1520-0442-16.10.1511
http://doi.org/10.3390/rs9050453
http://doi.org/10.1016/j.ejrs.2016.11.003
http://doi.org/10.1016/j.habitatint.2009.09.010
http://doi.org/10.1038/s41598-018-25296-w

	Introduction 
	Materials and Methods 
	Study Area 
	Acquisition of Spatial Dataset 
	Methodology 
	Land Use Cover Change (LUCC) Calculation 
	Calculation of Land Surface Temperature (LST) 
	CA-Markov Prediction Model Analysis 

	Results 
	Changes in LUCC between 2005 and 2020 
	Relationship between LUCC and LST 
	Variations of LST Changes over Different LUCC 
	Validation of Predicted LUCC and LST Scenarios 
	Predicted LUCC for 2035 and 2050 
	Limitations of the CA-Markov Model 

	Discussion 
	Conclusions 
	References

